

LA-UR-19-30689

Approved for public release; distribution is unlimited.

Title: The Carrington GMD project

Author(s): Mate, Adam

Intended for: Presentation

Issued: 2019-10-21

The Carrington GMD project

Adam Mate Ph.D. Candidate

Los Alamos NM August 19, 2019

UNCLASSIFIED

Outline

- Introduction
- Motivation of research GMD and HEMP events
- Modeling GMD/HEMP-E3 events
- Halloween Solar Storm simulation and results
- Ongoing work

Introduction

The Carrington event:

- Richard Carrington (1826-1875), English amateur astronomer
- September 1859: largest geomagnetic storm on record
 - first observations of solar flares by Richard Carrington and Richard Hodgson
 - Carrington suspected solar-terrestrial connection -- influence upon the Earth
- storm caused strong auroral displays, failure of telegraph systems

Motivation of research

Importance of electricity:

- high dependency in all areas of our life
- short-term outages: nuisance, discomfort
- long-term outages: severe (chaotic) consequences

Nation's electrical grid

- key component of the critical infrastructure
- under constant threats

Geomagnetic Disturbances

- GMDs are caused by solar flares
 - charged and magnetized particles from the Sun, which may disrupt Earth's magnetic field

https://phys.org/news/2016-03-powerfulgeomagnetic-storms-solar.html

- coronal mass ejections (CMEs) lead to the largest GMDs
- co-rotating interaction region (CIR): a high speed solar wind originating from a coronal hole
- results in auroral currents (electrojets)
 - magnetic field induces voltage in transmission lines

High-Altitude Electromagnetic Pulses

- brief, high-frequency electromagnetic waves
- HEMPs are caused by nuclear weapon detonations
 - E1 and E2: nearly instantaneous, damage to electronic components and low/medium-voltage infrastructure
 - E3: low-frequency GICs in transmission lines and power transformers similar to solar flares
- potential to cause significant damage

M. K. Rivera et al., "EMP/GMD phase 0 report, a review of EMP hazard environments and impacts," Los Alamos National Laboratory, LA-UR-16-28380, Nov. 2016.

Effect on Power Systems

- Geomagnetically Induced Currents induced quasi-dc currents in conductive infrastructure – are a major threat
- GICs may lead to ...
 - voltage collapse as a result of increased reactive power consumptions
 - increase of transformer temperatures, overheating of power transformers
 - misoperation of protection devices due to harmonics
 - potential cascading collapse of the entire grid
- Goal: understanding and mitigating hazard ⇒ MODELING

Modeling GMD/HEMP-E3 events

Knowledge is required about ...

- power system characteristics
 - geographical location of substations
 - resistance of system components, characteristics of power transformers
- geomagnetic source fields
 - amplitude, frequency content, spatial characteristics
- Earth conductivity structure
 - modeling method, substation grounding resistance, influence on geoelectric fields

Modeling GMD/HEMP-E3 events

Julia

PowerModels.jl

PowerModelsGMD.jl

based on PowerModels.jl

open-source

just-in-time

Julia/JuMP package

- high-performance

- steady-state power
 - network optimization

fast and reliable results

developed by LANL-ANSI

GMD event simulation

RTS-GMLC-GIC Reliability Test System of the Grid Modernization Laboratory Consortium

https://github.com/GridMod/RTS-GMLC

"PowerModelsGMD: An Open-Source framework for analyzing the impact of geomagnetic disturbances and high-altitude electromagnetic pulse E3 impact on bulk transmission systems based on PowerModels.jl," presented at the Military Operations Research Society 87th Symposium, Colorado Springs, CO, 19-Jun-2019.

GMD event simulation

Halloween Solar Storm

- largest ever recorded GMD event
- 10/29/2003 12:00am 10/30/2003 11:50pm

3-D geophysical modeling technique by OSU:

- determine earth conductivity structure model
- maximum induced voltage: on line C21 53.63V (at 10/30 7:56pm)
- longest line not necessarily going to see the largest GICs

General Information:

- machine: Intel(R) Core(TM) i7-8809G CPU @ 3.10GHz, 15.9 Gb memory
- simulation period: most intense 30 minutes (10/30 7:45 pm 8:14 pm) in one-minute time intervals

Number of converged periods	30 out of 30
Total comp. time	11.4805 sec
Avg. comp. time	0.3826 sec / period
Avg. cost of operation	\$ 87360.49

Caused Q losses:

greatest loss on "branch ID-88"

			Change	of Qloss			
4 MVar							
2 MVar							
0 MVar							
8 MVar							
6 MVar			H —		$-\mathbf{H}$		="ID-88"
4 MVar		\mathbb{H}					_
2 MVar		Ш	Н.,				_
0 MVar			шы	<u> </u>		Harll	
Bry Sty Sty Os	4 84 84 84 84 84	68408408408	4 84 984 884 B	4 84 84 84 84 84 84 8	0 8 0 8 0 R	26,0 54,0 54,0 54,0 54,0 54,0 54,	

Avg. Q _{loss}	77.66 MVar
Lowest Q _{loss}	63.05 MVar (TP-1)
Highest Q _{loss}	116.06 MVar (TP-12)

10/30 7:58 PM

Transformer temperatures:

Actual = Ambient + Top-oil + Hot spot

Transformer temperatures:

most critical transformers

Ongoing work

Development of PowerModelsGMD.jl

- Current capabilities:
 - quasi-dc power flow and ac optimal power flow (decoupled and coupled)
 - ac minimum load-shed (MLS)
 - ac optimal transmission switching with load-shed (OTS-MLS)
- Working on:
 - multi-time-period extension of OTS-MLS, since observed GMDs show time-varying behavior => mitigating transformer overheating

Ongoing work

AC power flow equations

$$\begin{split} &\sum_{e_{ij} \in E_i^+} p_{ij}^t - \sum_{e_{ji} \in E_i^-} p_{ij}^t = \sum_{g \in G_i} p_g^t - p_i^t - (V_i^t)^2 g_i \quad \forall i \in N^a, t \in T^a \\ &\sum_{e_{ij} \in E_i^+} (q_{ij}^t + \lambda_e^t) - \sum_{e_{ji} \in E_i^-} q_{ij}^t = \sum_{g \in G_i} q_g^t - q_i^t + (V_i^t)^2 b_i \quad \forall i \in N^a, t \in T^a \\ &p_{ij}^t = z_e (g_e(V_i^t)^2 - V_i^t V_j^t g_e \cos(\theta_i^t - \theta_j^t) - V_i^t V_j^t b_e \sin(\theta_i^t - \theta_j^t)) \, \forall e_{ij} \in E^a, t \in T^a \\ &q_{ij}^t = z_e (-(b_e + \frac{c_e}{2})(V_i^t)^2 + V_i^t V_j^t b_e \cos(\theta_i^t - \theta_j^t) - V_i^t V_j^t g_e \sin(\theta_i^t - \theta_j^t)) \, \forall e_{ij} \in E^a, t \in T^a \\ &p_{ji}^t = z_e (g_e(V_j^t)^2 - V_i^t V_j^t g_e \cos(\theta_j^t - \theta_i^t) - V_i^t V_j^t b_e \sin(\theta_j^t - \theta_i^t)) \, \forall e_{ij} \in E^a, t \in T^a \\ &q_{ji}^t = z_e (-(b_e + \frac{c_e}{2})(V_j^t)^2 + V_i^t V_j^t b_e \cos(\theta_j^t - \theta_i^t) - V_i^t V_j^t g_e \sin(\theta_j^t - \theta_i^t)) \, \forall e_{ij} \in E^a, t \in T^a \end{split}$$

Operational limit constraints

$$\begin{split} &(p_{ij}^t)^2 + (q_{ij}^t)^2 \leq z_e s_e^2, \quad (p_{ji}^t)^2 + (q_{ji}^t)^2 \leq z_e s_e^2 \quad \forall e_{ij} \in E^a, t \in T^a \\ &\underline{v}_i \leq v_i^t \leq \overline{v}_i \quad \forall i \in N^a, t \in T^a \\ &|\theta_i^t - \theta_j^t| \leq z_e \overline{\theta} + (1 - z_e) \theta^M \quad \forall e_{ij} \in E^a, t \in T^a \\ &z_g \underline{p}_g \leq p_g^t \leq z_g \overline{p}_g \quad \forall g \in G, t \in T^a \\ &z_g \underline{q}_g \leq q_g^t \leq z_g \overline{q}_g \quad \forall g \in G, t \in T^a \\ &z_g^t = z_g^{t-1} + y_g^t - \zeta_g^t \quad \forall g \in G, t \in T^a \setminus \{0\} \\ &y_g^t + \zeta_g^t \leq 1 \quad \forall g \in G, t \in T^a \\ &\sum_{\rho \in \beta_g} y_g^\rho \leq z_g^t \quad \forall g \in G, t \in T^a \end{split}$$

$$\begin{split} & \sum_{\rho \in \xi_g} z_g^{\rho} \leq 1 - z_g^t \quad \forall \ g \in G, t \in T^a \\ & \overline{\gamma}_g \geq p_g^t - p_g^{t-1} - \overline{p}_g y_g^t \quad \forall \ g \in G, t \in T \setminus \{0\} \\ & \underline{\gamma}_g \geq p_g^{t-1} - p_g^t - \overline{p}_g z_g^t \quad \forall \ g \in G, t \in T \setminus \{0\} \\ & 0 \leq p_i^t \leq \overline{p}_t^i \quad 0 \leq q_i^t \leq \overline{q}_t^i \quad \forall i \in N, t \in T^a \end{split}$$

GIC effects on transformers

GIC effects on transformers
$$\sum_{e \in E_i^+} I_e^t - \sum_{e \in E_i^-} I_e^t = a_i V_i^d \quad \forall i \in N^d$$

$$I_e^t = z_{\overrightarrow{e}} a_e (V_i^t - V_j^t + J_{\overrightarrow{e}}) \quad \forall e_{ij} \in \mathcal{E}^d, t \in T^d$$

$$I_e^t \ge \begin{cases} I_{eH}^t & \text{if } e \in E^\Delta \\ \frac{\alpha_e I_{eH}^t + I_{eL}^t}{\alpha_e} & \text{if } e \in E^y \\ \frac{\alpha_e I_{eS}^t + I_{eC}^t}{\alpha_e + 1} & \text{if } e \in E^\infty \end{cases} \qquad \overbrace{I_e^t} \ge - \begin{cases} I_{eH}^t & \text{if } e \in E^\Delta \\ \frac{\alpha_e I_{eS}^t + I_{eL}^t}{\alpha_e} & \text{if } e \in E^y \\ \frac{\alpha_e I_{eS}^t + I_{eC}^t}{\alpha_e + 1} & \text{if } e \in E^\infty \end{cases} \quad \forall e \in E^a, t \in T^a$$

$$0 \qquad \text{otherwise}$$

$$0 \leq \widetilde{I}_e^d \leq \overline{I}_e^d \quad \forall e \in \mathcal{E}^\tau$$

Eqs.
$$(5), (6)$$

$$\delta_e^t + \eta_e^t \le \mathcal{T}_e \quad \forall e \in E^\Delta \cup E^y \cup E^\infty, t \in T^a$$
$$\lambda_e^t = k_e V_i^t \widetilde{I}_e^t \quad \forall e_{ij} \in E^a, t \in T^a$$
$$z_e, z_g, y_g, \zeta_g \in \{0, 1\} \quad \forall e \in \mathcal{E}^a, g \in G$$

Supporting Constraints

$$z_g \le \sum_{e \in E_t^+ \cup E_t^-} z_e \quad \forall i \in N_l^a, g \in G_i$$
$$z_g \psi_g^t \ge \kappa_g^2 (p_g^t)^2 \quad \forall g \in G, t \in T^a$$
$$\widetilde{I}_e^t \le z_e \overline{I}_e^d \quad \forall e \in E^a, t \in T^a$$

THANK YOU!

